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Tetris

• Tetris is an arcade puzzle
game created by Alexey
Pajitnov in 1984, that has
since become a worldwide
cultural phenomenon, and one
of the most popular video
games of all time.

• Players attempt to stack
polyominoes as efficiently as
possible

Figure: Tetris gameplay screenshot
By Nestopia screenshot,

https://en.wikipedia.org/w/index.php?curid=6088342
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Mathematical results on Tetris

• There exists a finite sequence of pieces the computer can play
which are unplaceable [Burgiel, 1997]

• Solving most of the relevant problems are NP-complete, and
difficult to approximate [Demaine et al., 2003]

• Almost every possible arrangement of blocks in the Tetris board
is constructable from the Tetris pieces, under Tetris rules
[Hoogeboom and Kosters, 2005]
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Semigroup Theory 1

Some relevant facts and definitions needed
• A transformation semigroup is a semigroup consisting of

functions from a set to itself (transformations of the set),
analogous to permutation groups

• If S contains the identity, it is a transformation monoid. SI

denotes S coupled with an identity transformation, so SI is
always a monoid.

• Let S,H be finite semigroups, acting on the sets X,Y
respectively. We write their respective transformation semigroups
as (X,S) and (Y,H).
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Semigroup Theory 2

• We say (X,S) divides (Y,H)
if S is homomorphic to a
subsemigroup of H

• (X,S) embeds in (Y,H) is S is
isomorphic to a subsemigroup
of H

• The wreath product of (X,S)
with (Y,H) is written
(X,S) o (Y,H) = (X × Y,W ).
W is the set of all w = (f, h),
where f : Y −→ S and h ∈ H.
W acts on X × Y , such that,
for all (x, y) ∈ X × Y ,

(x, y) · w = (x · f(y), y · h)

.

Figure: Cascade product of
(X1, G1), (X2, G2), (X3, G3)
[Egri-Nagy et al., 2014]

5



Tetris as a transformation semigroup

• Let P a set of pieces. A "piece" is a group of connected cells.
• The game is played on an n× k sized board
• Define S as the semigroup where each σ = (p, ξ) ∈ S consists of a

set of connected cells p ∈ P , and a position 1 ≤ ξ ≤ n (although
the precise limits on the position ξ depend on the width of p).

• An element σ ∈ S acts on a configuration x by "dropping" the
piece p with the leftmost block in the column x, and if there is a
full row of width n, it is removed, and the blocks above the row
are dropped down by one.

• If the height of the stack exceeds k cells, then x · σ = E.
Furthermore, E · σ = E for all σ ∈ S.
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Tetris as a transformation semigroup

For σ1, σ2 ∈ S, define their product σ1σ2 as the transformation
resulting from applying σ1 then σ2 in the above way.
Let X be the set of configurations reachable by applying any word in
S to the empty configuration e.

Definition
(X,S) is a finite transformation semigroup, which we will call the
Tetris semigroup of P , a set of polyominoes, on the board with
dimensions n× k.

• Pieces in the standard game are the set of tetrominoes
• Generalizations with simpler sets, such as the triominoes, will be

discussed here
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Figure: Standard Tetris pieces with labels

Figure: Triominoes with labels
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Krohn-Rhodes Theory

Theorem (Krohn-Rhodes decomposition)
Given a transformation semigroup, S, the KR decomposition of S is
H1, H2, ...Hn, such that

S divides H1 oH2 oH3... oHn

where the Hi are finite simple groups, or the flip-flop monoid.
[Krohn and Rhodes, 1965]
The Krohn-Rhodes (KR) theorem describes a general decomposition
of transformation semigroups in terms of wreath products of the finite
simple groups and the flip-flop monoid.
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Flip-flop and Identity-reset semigroups

The flip-flop monoid is a three
element semigroup S = {A,B, I}
acting on X = {1, 2}, such that I
is an identity and ∀x ∈ X,

x ·A = 1

x ·B = 2

Important as the only
non-reversible element in the KR
decomposition.
Also called an identity-reset
monoid on two elements.

Figure: Flip-flop Monoid
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Holonomy groups

• Although the proof of the Krohn-Rhodes theorem gives a method
for computationally obtaining the decomposition of a given
semigroup, the decomposition obtained is often very far from
optimal.

• Holonomy groups give us the Holonomy decomposition theorem,
which implies the KR theorem, and gives a more efficient
decomposition. [Eilenberg, 1974]
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Holonomy Groups: tiles

• Define
Q = {{X · s}|s ∈ S} ∪ {X} ∪ {{a}|a ∈ X}

.
• Given, A,B ∈ Q, we define an reflexive, transitive relation on Q,

A ≤ B ⇐⇒ ∃s ∈ SI , A ⊆ B · s

Furthermore, let A < B if A ≤ B but not B ≤ A.
• This relation, which we will call subduction gives us an

equivalence relation on Q: A ≡ B ⇐⇒ A ≤ B,B ≤ A
• Define A to be a tile of B if A ( B and

∀Z ∈ Q,A ≤ Z ≤ B =⇒ Z = A,Z = B

• For each equivalence class A\ ≡ in Q\ ≡, let Ā be the unique
representative.
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Holonomy Groups

• If A ∈ Q, the set of tiles of A is ΘA ⊂ Q
• The holonomy group, written HA, of A is the set of permutations

of θA induced by the elements of SI

• If we let HA act on ΘA, then (ΘA, HA) is the holonomy
permutation group of A

• We can define the height of A ∈ Q by h(A), where h(A) is the
length of the longest strict subduction chain.

• Let h = h(X) be the height of (X,S). For each i ∈ [1, h], let

(Φi,Hi) =

h∏
i=1,h(Ā)=i

(ΘĀ, HĀ)

• (Φi,Hi) is a permutation group and (Φi, H̄i) is the
permutation-reset transformation obtained by appending all
constant maps to Hi.
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Holonomy Decomposition Theorem

Theorem (Holonomy decomposition theorem)
Let (X,S) be a finite transformation semigroup, then

(X,S) divides (Φ1, H̄1) o (Φ2, H̄2) o ... o (Φh, H̄h)

[Eilenberg, 1974]
This theorem implies the KR decomposition theorem from before.
We will use the Holonomy implementation in SGPDec, by A.
Egri-nagy, for the analysis. [Egri-Nagy et al., 2014]

14



Analysis - Standard rules

• Standard tetris, with tetrominoes on a 10 x 20 board has an
extrememly large state space (on the order of 2200)

• Our analysis will be exploring the semigroup via Tri-tris on small
board sizes.

• Under the standard rules, tetris seems to be aperiodic, since it is
always possible to "escape" a permutation group. Therefore, the
KR decomposition consists entirely of flip-flop monoids.

• In the following section we will modify the rules to introduce
periodicity and therefore, groups in the decomposition.
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Aperiodic Complexity and Tetris

• KR complexity of a semigroup is the smallest number of finite
simple groups in its KR decomposition

• Since aperiodic semigroups have zero finite simple groups in their
KR decomp., we need another metric. Therefore, we use the
smallest number of direct products of flip-flop monoids in the KR
decomposition.

For very small game sizes, we can use GAP and SGPDec to obtain
the complexity. We can bound the aperiodic complexity from above
by the length of the longest strict subduction chain of (X,S), called
the height of X with respect to S.
We define the height of the semigroup (X,S) as

hs(X) = |{X1 ⊂S X2 ⊂S X3...X}| − 1

For some small values of n, k these bounds are shown below.
Board Dimensions No. of configurations, |X| |S| hs(X)

3× 3 35 2056 13
3× 4 135 259726 32
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A rule modification

• We remove the state E, and replace it with the empty board.
Therefore, any losing game "resets" to a new game.

• This rule modification introduces a lot more symmetry into the
semigroup, causing some interesting groups to appear in the
holonomy decomposition.

Board Dimensions |X| holonomy groups present
3× 3 34 (4, C2 × C2), (3, S3), (2, C2)

3× 4, P = {RS,LUS,RUS} 116 (4, C2), (5, S5), (4, S4), (3, S3), (2, C2)
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Holonomy Group (4, C2 × C2)

Figure: Graph of the Holonomy group showing tiles as nodes, and members
of S as edges
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Visualization of states

The above group is permuting the following states:

Figure: State 12 Figure: State 26 Figure: State 6
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Discussion

• We formulated the game of Tetris as a transformation semigroup
• We have seen how KR complexity can be used to analyze a game

formulated as a semigroup
• Tetris seems to exhibits pools of reversibility only if we add a

"restart" mechanic
• Is Tetris with regular rules provably aperiodic?
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